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Abstract

A theory on the wave drag as the Rankine ovoids moving horizontally, uniformly and rapidly in uniformly vertical stratified fluid (or
ocean) is presented. A mass source resulting from the theory in a uniform fluid is used to model a hydrodynamic interaction between the
Rankine ovoid and stratification. Theoretical results show that there exists an asymptotic state of the drag in supercritical regimes where
internal Froude numbers are large. When the Rankine ovoid reduces to a sphere, the result we obtained is in good agreement with the
previous theoretical and experimental results. An experiment on the elongated Rankine ovoid is also carried out to validate the theoret-
ical results.
� 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in

China Press. All rights reserved.
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1. Introduction

Unlike the case in the uniform fluids, the internal gravity
waves in the vertically stratified fluid (or ocean) can prop-
agate not only at sea surface but also in fluids (or ocean).
For internal waves with a small amplitude generated by a
uniformly moving body, the body can be replaced by an
equivalent distribution of mass source, such as combina-
tion of source and sink and dipole. Thus, for a given point
mass source, solution of the linear problem for this kind of
the internal wave’s generation can be found by superposi-
tion of an elementary special solution-retarded Green’s
function [1,2]. Previously, Gorodtsov and Teodorovich [1]
and Greenslade [3], respectively, carried out the theoretical
study of drag of sphere moving horizontally and uniformly
in the fluid with the constant Brunt-Väisälä frequency. Lof-
quist and Purtell [4] and Xu et al. [5], respectively, reported

the experimental studies of the drag increments for the
sphere and the Rankine ovoid moving horizontally and
uniformly in stratified fluids.

In this paper, we present the intrinsic simplification of
the problems of internal waves generated by horizontally,
rapidly, and uniformly moving Rankine ovoid in the uni-
formly stratified fluid and the asymptotic solutions in
detail. The basic equations are formulated in Section 2,
whereas the general theory of the drag increment in the
case of the uniformly stratified fluid is given in Section 3.
The theory of the drag increment of Rankine ovoid moving
uniformly and rapidly in uniformly stratified fluid is given
in Section 4. A reduced case as the Rankine ovoid becomes
a sphere is discussed in Section 5, and some comparisons
and conclusions are presented in Section 6.

2. Basic equations

Assuming �q is the mean density and is a constant, q0ðzÞ
the vertical density profile, q a perturbation of the

1002-0071/$ - see front matter � 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited

and Science in China Press. All rights reserved.

doi:10.1016/j.pnsc.2008.01.017

* Corresponding author. Tel.: +86 13589384588.
E-mail address: ztxu@ouc.edu.cn (Z. Xu).

www.elsevier.com/locate/pnsc

Available online at www.sciencedirect.com

Progress in Natural Science 18 (2008) 723–727



environmental density q0ðzÞ, q velocity of fluid, and p pres-
sure. The equations of a linearized small perturbation
describing the conservation of mass and momentum and
incompressibility are

qt þ �qðN 2=g2Þðq � gÞ ¼ 0;

�qqt ¼ �rp þ qg; r � q ¼ 0:
ð1Þ

Here, the change of the density is ignored in the inertial
terms, i.e. the so-called Boussinesq’s approximation is
used. Let z be positive along with the gravity, the Brunt-
Väsälä’s frequency is N 2 ¼ ðg=�qÞdq0=dz. For the mass
source mðr; tÞ, in which r ¼ ðx; y; zÞ, a quasi-perturbation
potential / can be introduced as follows:

L/ðr; tÞ ¼ mðr; tÞ; L ¼ @2
t Dþ N 2Dh; ð2Þ

where D and Dh are the Laplace and horizontal Laplace
operator, respectively. Hence, the internal perturbations
q, p and q can be represented as

q ¼ l1/; p ¼ l2/; q ¼ l3/; ð3Þ

where

l1 ¼ @2
trþ N 2rh; l2 ¼ ��qð@2

t þ N 2Þ;
l3 ¼ ��qðN 2=gÞ@2

tz ð4Þ

in which r and rh are Hamiltonian and horizontal Ham-
iltonian operator, respectively. By the Green function
Gðr; tÞ, an inhomogeneous equation describing the internal
waves with Dirac d in r.h.s is derived

LGðr; tÞ ¼ dðrÞdðtÞ ð5Þ

and the quasi-perturbation potential / can be represented
by a convolution of the Green function G with the mass
source mðr; tÞ. Similarly, the perturbation pressure can be
denoted by

pðr; tÞ ¼��qð@2
ttþN 2Þ@t

Z
Gðr� r0; t� t0Þmðr0; t0Þdr0dt0; ð6Þ

where the Green function G in Eq. (6) is the so-called re-
tarded Green function, and it is converted into zero in neg-
ative time, i.e. the Green function satisfies the causality
condition [1]. The causality avoids an additional selection
of radiant condition.

For the internal perturbations, a significant result of Eq.
(3) is an energy balance including the kinematic and poten-
tial energy E, energy flux S and work from the mass source
W, namely,

@t

Z
Edrþ

Z
Sds ¼

Z
pðr; tÞmðr; tÞdr � W ;

E ¼ �qjqj2=2þ ðgqÞ2=ð2�qN 2Þ; S ¼ pq:

ð7Þ

For the mass source, i.e. the equivalent body (for instance,
the Rankine ovoid) moving at a constant velocity, the per-
turbation energy in full space is unchanged with time, so
the wave generation is stationary. Hence, for an estimation
of radiant energy of the internal waves, one of the integrals
in Eq. (7), i.e. p – integral in all the wave properties is en-

ough. The energy loss in a unit time W can be calculated
simply as the mass source is prescribed in priori, therefore
a significant task is to find the pressure p and to calculate
the integral in full space.

3. Drag of rapidly moving mass sources in stratified fluid

In order to solve the drag of the internal waves gener-
ated by the Rankine ovoid, the Fourier transformation is
used in this study. Let f ¼ f ðr; tÞ be an arbitrary physical
quantity in this study, thus the Fourier transform pairs
with respect to frequency x and wave number k are defined
as follows:

f ðr; tÞ¼ 1

2p

Z
fxðrÞexpð�ixtÞdx¼ 1

ð2pÞn
Z

fkðtÞexpðik � rÞdk

¼ 1

ð2pÞnþ1

Z
fk;x expðik � r� ixtÞdkdx ð8Þ

and correspondingly

fxðrÞ ¼
Z

f ðr; tÞ expðixtÞdt; f kðtÞ ¼
Z

f ðr; tÞ expð�ik � rÞdr

fk;x ¼
Z

f ðr; tÞ expð�ik � rþ ixtÞdrdt ð9Þ

It should be pointed out that all the integrals above are cal-
culated from �1 to þ1 except the frequency-Fourier
transformation of the retarded Green function. The inte-
gral of this function with respect to the time t is shortened
to a half infinity region (0;þ1), which leads to an analytic-
ity of the retarded Green function in the upper half plane
of the complex frequency.

For the mass source moving at a uniform velocity v0, it
follows that

mðr; tÞ ¼ MðRÞ; R � r� v0t

mk ¼ Mk expð�ik � v0tÞ; mk;x ¼ 2pMkdðx� k � v0Þ: ð10Þ

Obviously, the full Fourier transformation mk;x is propor-
tional to the Dirac function dðx� k � v0Þ, i.e. there exists a
linear relation between the frequency x and wave number
k. By the stationary character of internal wave fields in
the body frame, the pressure is found,

p ¼ i

ð2pÞn �q

�
Z

xðN 2 � x2ÞGk;xMk expðik � RÞdðx� k � v0Þdkdx:

ð11Þ

Because the wave drag of the mass source moving at the
uniform velocity is equal to the energy loss along with a
unit path, the wave drag can be defined by

D ¼ W
v0

¼ 1

v0

Z
pðr; tÞmðr; tÞdr: ð12Þ

Using the Fourier transform yields
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D ¼ i

ð2pÞn
�q
v0

Z
xðN 2 � x2ÞGk;xjMkj2dðx� k � v0Þdkdx;

ð13Þ

where n is the dimension number of space. For the real re-
tarded Green function, its Fourier transform as in Eqs. (11)
and (13) possesses some symmetric characters, i.e. it is even
symmetric for the real part and odd symmetric for the
imaginary part for the displacements of k! �k and
x! �x. Based on this feature, a non-zero contribution
of the wave drag D in the integral expression is given only
by the imaginary part. For the uniformly stratified fluid,
the imaginary part of the retarded Green function is con-
centrated on the dispersion curved surface of internal
waves x2k2 ¼ N 2k2

h, and is proportional to the correspond-
ing Dirac delta function, namely,

ImGk;x ¼ �psgnxdðx2k2 � N 2k2
hÞ ð14Þ

using Eq. (14) yields

D ¼ p
ð2pÞn

�q
v0

Z
jxjðN 2 � x2ÞjMkj2dðx� k � v0Þ

� dðx2k2 � N 2k2
hÞdkdx: ð15Þ

From the above formulae, it is known that there exist two
relations x ¼ k � v and x2k2 ¼ N 2k2

h in this theory, so that
the times of the integrals will reduce to two. In a three-
dimensional space n ¼ 3, two residual integrals are only
those along the wave vectors, thus it follows that

D ¼ p
ð2pÞn

�q
v0

Z
jxjðN 2 � x2Þ

X4

i¼1

jMkij2dðx� k � v0Þ

� dðx2k2 � N 2k2
hÞdkdx; ð16Þ

where

k1 ¼
x
v0

;
x

Nv0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2v2

0 � N 2

q
;

k
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 � x2

p� �
: ð17Þ

For the ki as i ¼ 2; 3; 4, unlike k1, only one sign is changed
in the components. From the above discussion, it is known
that an allowable frequency for the internal gravity waves
generated by the mass sources is bounded above by
Brunt-Väisälä frequency, whereas the allowable wave num-
ber is also bounded below by a minimum of wave number
N=v0.

4. Drag of horizontally and rapidly moving Rankine ovoids

A combination of the source and sink is considered in
this section, which is a body model as the combination
moves at a uniform velocity in the horizontal direction.
For the uniform fluid, the bodies are called the Rankine
ovoids. For horizontally moving Rankine ovoids, the
source can be represented by [1]

mðX ; vÞ ¼ MðRÞ ¼ m0dðvÞ½dðX � aÞ � dðX þ aÞ�; ð18Þ

where X ¼ x� v0t;R ¼ ðX ; vÞ, in which v0 is the moving
velocity of the source along with horizontal coordinate X,

and v ¼ ðy2 þ z2Þ1=2 is the radius in the cylinder coordinate;
a is the distance from the origin of coordinates to the loca-
tion of source and sink; m0 is the intensity of source or sink.
The Fourier transformation of the source (18) is

Mk ¼ �2im0 sinðkxaÞ; ð19Þ

where kx is the wave number along with x coordinate.
From (18), it is deduced that the field of the internal waves
generated by the Rankine ovoid is stationary.

In accord with the potential theory in uniform fluid, for
weakly stratified fluid and uniformly moving source, the
shape of the Rankine ovoid can be determined as follows:

nþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ðnþ 1Þ2

q � n� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ðn� 1Þ2

q ¼ 2pa2v0

m0

g2; ð20Þ

where n � X=a is a dimensionless horizontal coordinate
(axial coordinate) and g � v=a is a dimensionless radius
in the cylinder coordinates, by these definitions the maxi-
mal length of the Rankine ovoid is 2X 0, and its maximal
diameter is 2v0. To define a dimensionless quantity
P � m0=ðpa2v0Þ, thus the surface shape of the Rankine
ovoid will depend on the parameter P and its maximal
length, and the diameter can be determined by the follow-
ing formulae:

v0 ¼ g0a; X 0 ¼ n0a; g2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

0 þ 1
q

¼ P: ð21Þ

In the following we give two limiting cases of the Rankine
ovoid.

Case 1: As 2a! 0 and the moment of the source–sink com-
bination d ¼ 2am0ð¼ constÞ remains unchanged,
the Rankine ovoid reduces to a sphere and the
source–sink combination reduces to a dipole.
Indeed, the dimensionless quantity P increases
infinitely as 2a! 0, this leads to the determi-
nation of the radius of the sphere, i.e. v0 ¼ X 0 ¼
ðd=2pv0Þ1=3.

Case 2: As 2a!1 and the moment of the source–sink
combination d ¼ 2am0ð¼ constÞ remains
unchanged as in Case 1, the dimensionless quantity
P will become small. Similar to (19), the diameter
of the Rankine ovoid becomes also small by rule
2v0 � ð2d=pv0aÞ1=2 ! 0 in the first order approxi-
mation, and its length increases by rule
2X 0 � 2a!1. An interesting case is that if the
diameters of the Rankine ovoids remain
unchanged, and if the intensity of source–sink com-
bination also remains unchanged, i.e. m0 ¼ const,
the moment of the combination is assumed not to
be a constant. Under this assumption, from (19),
an invariable diameter 2v0 � 2ðm0=pv0Þ1=2 can be
found, whereas its length increases with the
increasing of the distance between the source and
sink, i.e. 2X 0 � 2a asymptotically (the exact
relation is 2X 0 � 2ðaþ v0ÞÞ.
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When the radius of the Rankine ovoid moving at a uni-
form velocity (v0) remains unchanged, only the distance
between the source and sink 2a varies, a series of Rankine
ovoids are formed. For these Rankine ovoids, two length
scales, i.e. the vertical scale v0 and the horizontal scale a

play an important part in the computation of the wave
drag except the stratified scale N. To define an internal
Froude number F a ¼ v0=ðNaÞ, one can represent the wave
drag by means of this Froude number, namely,

D ¼ �qm2
0N 2

4pv2
0

U
2Na
v0

� �Z 1

N=v0

dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � N 2=v2

0

q ;

UðtÞ ¼ 1� 2

t
J 1ðtÞ; ð22Þ

where J 1ðtÞ is the Bessel function. Eq. (22) is an expression
of the wave drag in the linear approximation. In this for-
mula, the integral with respect to the wave number k in-
creases logarithmically due to the large contribution from
the short waves.

In order to eliminate the singularity in (22) at the infinite
wave number, a regulation is carried out in this study, i.e.
the above limit of the integral (16) is truncated at a finite
wave number K, whereas the K is still large so that
K � N=v0. Thus, the theoretical wave drag (22) can be
found as follows:

D ¼ p
4

�qv4
0N 2U

2

F a

� �
ðln F v0

þ CÞ; F v0
� 1; ð23Þ

where C is a constant, F v0
is another internal Froude num-

ber and defined by the radius v0, i.e. F v0
¼ v0=ðNv0Þ. And

the Uð�Þ is a function related to the Bessel function. Com-
paring with the previous results, we inverse the wave drag
to the dimensionless coefficient of the wave drag cD,
namely,

cD ¼
D

1
2
�qv2

0S
¼ U

2

eF v0

� �
ln F v0

þ C

2F 2
v0

; e � v0

a
; ð24Þ

where S ¼ pv2
0 is an area of the section perpendicular to the

horizontally moving axis for the Rankine ovoids. e is a ra-
tio of the radius to length of the Rankine ovoids and is a
small parameter for the elongated Rankine ovoids. Obvi-
ously, there exists a relation between two Froude numbers

F a � v0=ðNaÞ ¼ eF v0
: ð25Þ

If one of the two Froude numbers is large, an asymptotic
formula is obtained for the elongated Rankine ovoids,

D ¼ p
8

�qv4
0N 2 ln F v0

þ C

F 2
a

; F v0
� F a � 1 ð26Þ

and the drag coefficient is

cD ¼
D

1
2
�qv2

0S
¼ ln F v0

þ C

4F 2
aF 2

v0

¼ a
v0

� �2 ln F v0
þ C

4F 4
v0

: ð27Þ

From the asymptotic result (27), it can be expected that the
value of drag coefficient is smaller when compared with
non-regulation’s result.

5. The reduced case: a sphere

As the elongation-to-radius ratio a=v0 of the Rankine
ovoid becomes zero, the ovoid will reduce to a sphere,
and its unique length scale is its radius R0. Here, the theo-
retical results are reduced to those in Case 1. When a! 0
and d ¼ 2am0 (the moment of dipole), and using the above
regulation, one can find the wave drag of the sphere with
radius R0 as follows:

D ¼ p
8

�qR4
0N 2 ln F R0

þ C

F 2
R0

; ð28Þ

where the internal Froude number of the sphere is defined
as F R0

� v0=ðNR0Þ � 1: Of course, (28) can be derived
from the reduction of (26). However, because the wave
drag of the Rankine ovoid includes two independent quan-
tities v0 and a, whereas the sphere has only one indepen-
dent quantity R0, the reduction is not straightforward. By
(28), the drag coefficient of the sphere can also be obtained,
namely,

cD ¼
ln F R0

þ C

4F 4
R0

: ð29Þ

For the sphere, the constant C in (29) can be determined
theoretically [1], that is

C ¼ 7=4� c; ð30Þ

where c ¼ 0:577 is Euler’s constant. Greenslade [3] con-
structed a composite theory to predict the drag increment
in the regime of large Froude number. His theoretical re-
sults are in good agreement with the theoretical ones of
Gorodtsov and Teodorovich [1] and with the experimental
ones of Mason [6].

6. Determination of the constant C

An experiment is carried out in a Tank of Stratified
Flow and Internal Wave with 6 m length, 0.5 m depth,
and 1.8 m width, located at The Physical Oceanography
Lab in OUC. In this experiment, the total depth of water
is 40 cm, the densities on the surface and at the bottom
are 1.00 and 1.03 g/cm3, respectively, the vertical mean
density is 1.015 g/cm3. So the Brunt-Väisälä’s frequency
is 0.851 Hz. The internal Froude numbers F r are taken
from the following series: 0.95, 1.05, 1.33, 1.43, 1.45,
1.65, and 1.85 corresponding to the towed velocities 9.69,
10.71, 13.57, 14.59, 14.79, 16.83, and 18.77 (cm/s), respec-
tively. The length-to-radius ratio is a fixed value 1.5. By
these parameters, the experiment of the drag is performed
in the linearly stratified flow. The theoretical and experi-
mental results are compared, and are indicated in Figs. 1
and 2 gives a theoretical prediction of the drag coefficients
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of the Rankine ovoids with the different length-to-radius
ratios.

Fig. 1 shows that the theoretical and experimental
results are in good agreement. Based on these results the
constant C in (27) can be determined as 1.104 experimen-
tally. Fig. 2 shows that as the internal Froude numbers
are larger than 2, there exist an asymptotic state, i.e. all
the curves become almost a horizontal straight line,
whereas when the internal Froude number is smaller than
2, the drag coefficients disperse by the length-to-radius
ratios. Generally, the larger the length-to-radius ratio is,
the larger the drag coefficient is. At the same time, the dif-
ferences of the constants C between the sphere and the
Rankine ovoids are very small, hence this fact led us to
draw a conclusion, that is no matter a sphere and a Ran-
kine ovoid, (30) holds if F R0

or F v0
is larger than 2. How-

ever, if they are smaller than 2, (30) does not hold anymore.
Finally, it should be pointed out that even though the

paradox of infinite wave drag is removed by the regulation,
introduction of some non-local sources is necessary in fur-
ther studies.
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